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or the difference between a conventional macroblock and a prediction of it
based on previous and/or subsequent video frames (for P- and B-frames).
The encoder includes an inverse quantizer and inverse mapper (e.g., inverse
DCT) so that its predictions match those of the complementary decoder.
Also, it is designed to produce compressed bit streams that match the capac-
ity of the intended video channel. To accomplish this, the quantization para-
meters are adjusted by a rate controller as a function of the occupancy of an
output buffer. As the buffer becomes fuller, the quantization is made coarser,
so that fewer bits stream into the buffer.

B We conclude our discussion of motion compensated predictive coding with
an example illustrating the kind of compression that is possible with modern
video compression methods. Figure 8.40 shows fifteen frames of a 1 minute HD
(1280 x 720) full-color NASA video, parts of which have been used through-
out this section. Although the images shown are monochrome, the video is a se-
quence of 1,829 full-color frames. Note that there are a variety of scenes, a great
deal of motion, and multiple fade effects. For example, the video opens with a
150 frame fade-in from black, which includes frames 21 and 44 in Fig. 8.40, and
concludes with a fade sequence containing frames 1595, 1609, and 1652 in
Fig. 8.40, followed by a-final fade to black. There are also several abrupt scene
changes, like the change involving frames 1303 and 1304 in Fig. 8.40.

An H.264 compressed version of the NASA video stored as a Quicktime
file (see Table 8.4) requires 44.56 MB of storage —plus another 1.39 MB for
the associated audio. The video quality is excellent. About 5 GB of data
would be needed to store the video frames as uncompressed full-color im-
ages. It should be noted that the video contains sequences involving both ro-
tation and scale change (e.g., the sequence including frames 959, 1023, and
1088 in Fig. 840). The discussion in this section, however, has been limited to
translation alone. n

FIGURE 8.39

A typical motion
compensated
video encoder.

Quantization as defined
earlier in the chapter is
irreversible. The “inverse
quantizer” in Fig. 839
does not prevent infor-
mation loss.

EXAMPLE 8.22:
Video
compression
example.

9

See the book Web site for
the NASA video segment
used in this section.
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Frame 0021

Frame 0959 Frame 1023 Frame 1088

a » I
Frame 1224

Frame 1595 Frame 1609 Frame 1652

FIGURE 8.40 Fifteen frames from an 1829-frame, 1-minute NASA video. The original video is in HD full color.
(Courtesy of NASA.)

Lossy predictive coding

In this section, we add a quantizer to the lossless predictive coding model intro-
duced earlier and examine the trade-off between reconstruction accuracy and
compression performance within the context of spatial predictors. As Fig. 8.41
shows, the quantizer, which replaces the nearest integer function of the error-free
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encoder, is inserted between the symbol encoder and the point at which the pre-
diction error is formed. It maps the prediction error into a limited range of out-
puts, denoted é(n), which establish the amount of compression and distortion
that occurs.

In order to accommodate the insertion of the quantization step, the error-
free encoder of Fig. 8.33(a) must be altered so that the predictions generated
by the encoder and decoder are equivalent. As Fig. 8.41(a) shows, this is ac-
complished by placing the lossy encoder’s predictor within a feedback loop,
where its input, denoted f(n), is generated as a function of past predictions
and the corresponding quantized errors. That is,

f(n) = é(n) + f(n) (82-38)

where f (n) is as defined earlier. This closed loop configuration prevents error
buildup at the decoder’s output. Note in Fig. 8.41(b) that the output of the de-
coder is given also by Eq. (8.2-38).

B Delta modulation (DM) is a simple but well-known form of lossy predictive
coding in which the predictor and quantizer are defined as

f(n) = af(n — 1) (8.2-39)

and

4i) = {+§ fore(n) > 0 (8.2-40)

—{ otherwise

where a is a prediction coefficient (normally less than 1) and { is a positive
constant. The output of the quantizer, é(n), can be represented by a single bit
[Fig. 8.42(a)], so the symbol encoder of Fig. 8.41(a) can utilize a 1-bit fixed-
length code. The resulting DM code rate is 1 bit/pixel.

Figure 8.42(c) illustrates the mechanics of the delta modulation process,
where the calculations needed to compress and reconstruct input sequence

b

FIGURE 8.41
A lossless
predictive
coding model:

(a) encoder;
(b) decoder.

EXAMPLE 8.23:
Delta modulation.
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ab
B

FIGURE 8.42
An example of

delta modulation.

é(n)
Code =1
+6.5
e(n)
—_— 6.5 Granular noise
Code =0 B . —_—
Slope overload
Input Encoder Decoder Error
L (O T OB O N (O N (OB (DR (O
0 14 | — — — 14.0 ‘* — 14.0 0 0
1 15 14.0 1.0 6.5 20.5 } 14.0 20.5 =535
2 14 20.5 -6.5 -6.5 140 | 205 14.0 0.0
3 15 14.0 1.0 6.5 20 S 14.0 20.5 =55
14 29 20.5 8.5 6.5 27A0 20.5 27.0 2.0
15 37 27.0 10.0 6.5 335 27.0 335 | 3.5
16 47 33.5 13.5 6.5 40.0 335 40.0 7.0
17 62 40.0 22.0 6.5 46.5 40.0 46.5 15.5
18 75 46.5 28.5 6.5 53.0 46.5 53.0 22.0
19 77 53 0 24.0 6.5 59 6 53.0 59.6 17.5
- I I N - S |

{14,15,14,15,13, 15, 15, 14, 20, 26, 27, 28, 27, 27, 29, 37, 47, 62, 75, 77. 78,
79, 80, 81, 81, 82,82} with a = 1 and { = 6.5 are tabulated. The process be-
gins with the error-free transfer of the first input sample to the decoder. With
the initial condition f(0) = f(0) = 14 established at both the encoder and
decoder, the remaining outputs can be computed by repeatedly evaluating
Egs. (8.2-39), (8.2-30), (8.2-40), and (8.2-38). Thus, when n = 1, for example,
f(l) =(1)(14) = 14,e(1) =15 — 14 = 1,e(1) = +6.5 (because e(1) > 0),
f(l) = 6.4 + 14 = 20.5, and the resulting reconstruction error is (15 — 20.5),
or —5.5.

Figure 8.42(b) shows graphically the tabulated data in Fig. 8.42(c). Both the
input and completely decoded output [ f(n) and f(n)] are shown. Note that in
the rapidly changing area from n = 14 to 19, where { was too small to repre-
sent the input’s largest changes, a distortion known as slope overload occurs.
Moreover, when ¢ was too large to represent the input’s smallest changes, as in
the relatively smooth region from n = 0 to n = 7, granular noise appears. In
images, these two phenomena lead to blurred object edges and grainy or noisy
surfaces (that is, distorted smooth areas). "

The distortions noted in the preceding example are common to all forms of
lossy predictive coding. The severity of these distortions depends on a complex set
of interactions between the quantization and prediction methods employed. De-
spite these interactions, the predictor normally is designed with the assumption of
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no quantization error, and the quantizer is designed to minimize its own error.
That is, the predictor and quantizer are designed independently of each other.
Optimal predictors

In many predictive coding applications, the predictor is chosen to minimize the
encoder’s mean-square prediction error’

E{é(n)} = E{[f(n) - F(m]'} (8.2-41)
subject to the constraint that
f(n) = é(n) + f(n) ~ e(n) + f(n) = f(n) (8.2-42)
and
f(n) = ia,-f(n o §} (8.2-43)
i=1

That is, the optimization criterion is minimal mean-square prediction error, the
quantization error is assumed to be negligible [¢(n) ~ e(n)] and the prediction is
constrained to a linear combination of m previous samples.” These restrictions are
not essential, but they simplify the analysis considerably and, at the same time, de-
crease the computational complexity of the predictor. The resulting predictive
coding approach is referred to as differential pulse code modulation (DPCM).

Under these conditions, the optimal predictor design problem is reduced to
the relatively straightforward exercise of selecting the m prediction coeffi-
cients that minimize the expression

m 2
E{(n)} = E{|:f(n) - Yaif(n - i)} } (8.2-44)
i=1

Differentiating Eq. (8.2-44) with respect to each coefficient, equating the de-
rivatives to zero, and solving the resulting set of simultaneous equations under
the assumption that f(n) has mean zero and variance o? yields

a=R'r (8.2-45)
where R ! is the inverse of the m X m autocorrelation matrix

[E{f(n— 1) f(n— 1)} E{f(n—-1)f(n—2)} - E{f(n—1)f(n—m)} ]
E{f(n = 2) f(n - 1)} : :

LE(f(n = m)f(n — )} E{f(n - m)f(n —2)} -+ E{f(n~ m)f(n— m)}_
(8.2-46)

"The notation E{-} denotes the statistical expectation operator.

*In general, the optimal predictor for a non-Gaussian sequence is a nonlinear function of the samples
used to form the estimate.
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and r and « are the m-element vectors

E{f(n)f(n — 1)} a
r EUWYW_D} and a = | ¥ (8.2-47)
E{f(n)f(n — m)} a

Thus for any input sequence, the coefficients that minimize Eq. (8.2-44) can be
determined via a series of elementary matrix operations. Moreover, the coeffi-
cients depend only on the autocorrelations of the samples in the original se-
quence. The variance of the prediction error that results from the use of these
optimal coefficients is

oi= ot~ ale= o’ = SE(ff(n - D)e  (8248)
i=1

Although the mechanics of evaluating Eq. (8.2-45) are quite simple, compu-
tation of the autocorrelations needed to form R and r is so difficult in practice
that local predictions (those in which the prediction coefficients are computed
for each input sequence) are almost never used. In most cases, a set of global
coefficients is computed by assuming a simple input model and substituting
the corresponding autocorrelations into Egs. (8.2-46) and (8.2-47). For instance,
when a 2-D Markov image source (see Section 8.1.4) with separable autocor-
relation function

E{f(x.y)f(x =i,y = j)} = o’pp} (8.2-49)

and generalized fourth-order linear predictor

fy) =enf(xy = 1) + ayf(x — 1,y = 1)
+ayf(x — 1, y) + ayf(x — 1,y +1)  (82-50)

are assumed, the resulting optimal coefficients (Jain [1989]) are

= pp = —pypp az=p, ag=0 (8.2-51)

where pj, and p, are the horizontal and vertical correlation coefficients, respec-
tively, of the image under consideration.

Finally, the sum of the prediction coefficients in Eq. (8.2-43) normally is re-
quired to be less than or equal to one. That is,

Sa =1 (8.2-52)

This restriction is made to ensure that the output of the predictor falls within the
allowed range of the input and to reduce the impact of transmission noise
[which generally is seen as horizontal streaks in reconstructed images when the
input to Fig. 8.41(a) is an image]. Reducing the DPCM decoder’s susceptibility
to input noise is important, because a single error (under the right circum-
stances) can propagate to all future outputs. That is, the decoder’s output may
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become unstable. By further restricting Eq. (8.2-52) to be strictly less than 1 con-
fines the impact of an input error to a small number of outputs.

B Consider the prediction error that results from DPCM coding the mono-
chrome image of Fig. 8.9(a) under the assumption of zero quantization error
and with each of four predictors:

flxiy) = 097f(x,y — 1) (8.2-53)
fxiy) = 05f(x,y — 1) + 0.5f(x — 1, y) (8.2-54)
Fxy) = 075F(x,y — 1) + 0.75f(x — 1,y) — 0.5f(x — 1,y — 1) (8.2-55)
. _J097f(x,y — 1) it Ak = Av

flay) = {0.97f(x —1,y) otherwise (3256

where Ah = |f(x —1,y) — f(x =1,y — 1) and Av = |f(x,y — 1) -
f(x = 1,y — 1)| denote the horizontal and vertical gradients at point (x, y).
Equations (8.2-53) through (8.2-56) define a relatively robust set of «; that
provide satisfactory performance over a wide range of images. The adaptive
predictor of Eq. (8.2-56) is designed to improve edge rendition by computing a
local measure of the directional properties of an image (Ak and Av) and se-
lecting a predictor specifically tailored to the measured behavior.

Figures 8.43(a) through (d) show the prediction error images that result
from using the predictors of Egs. (8.2-53) through (8.2-56). Note that the
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A comparison of
four linear
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techniques.
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visually perceptible error decreases as the order of the predictor increases.’
The standard deviations of the prediction errors follow a similar pattern. They
are 11.1,9.8,9.1, and 9.7 intensity levels, respectively. [ ]

Optimal quantization

The staircase quantization function r = g(s) in Fig. 8.44 is an odd function of s
[that is, g(—s) = —g(s)] that can be described completely by the L/2 values of
s; and ¢; shown in the first quadrant of the graph. These break points define
function discontinuities and are called the decision and reconstruction levels of
the quantizer. As a matter of convention, s is considered to be mapped to ¢; if
it lies in the half-open interval (s;, s;,1].

The quantizer design problem is to select the best s; and ¢, for a particular op-
timization criterion and input probability density function p(s). If the optimiza-
tion criterion, which could be either a statistical or psychovisual measure,? is the
minimization of the mean-square quantization error (that is, E{(s; — t;)*} ) and
p(s) is an even function, the conditions for minimal error (Max [1960]) are

Si L
/ (s —t)p(s)ds i= 1,2,...,5 (8.2-57)
0 i=0
i+t L
5= 7 =LbZ..p-d (8.2-58)
L
o0 I = —
2
FIGURE 8.44 Output t
A typical
quantization 79 )
function.
, .___I \tzq(s)
L :
S-((L/2)-1) i E E

1

\ : s 2 S(L/2)-1
| Input

)

"Predictors that use more than three or four previous pixels provide little compression gain for the
added predictor complexity (Habibi [1971]).

*See Netravali [1977] and Limb and Rubinstein [1978] for more on psychovisual measures.
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and
S_; = —§; t—i = ‘_t,' (8.2‘59)

Equation (8.2-57) indicates that the reconstruction levels are the centroids of
the areas under p(s) over the specified decision intervals, whereas Eq. (8.2-58)
indicates that the decision levels are halfway between the reconstruction lev-
els. Equation (8.2-59) is a consequence of the fact that g is an odd function. For
any L, the s; and ¢; that satisfy Egs. (8.2-57) through (8.2-59) are optimal in the
mean-square error sense; the corresponding quantizer is called an L-level
Lloyd-Max quantizer.

Table 8.12 lists the 2-,4-, and 8-level Lloyd-Max decision and reconstruc-
tion levels for a unit variance Laplacian probability density function [see
Eq. (8.2-35)]. Because obtaining an explicit or closed-form solution to Egs.
(8.2-57) through (8.2-59) for most nontrivial p(s) is difficult, these values
were generated numerically (Paez and Glisson [1972]). The three quantizers
shown provide fixed output rates of 1, 2, and 3 bits/pixel, respectively. As
Table 8.12 was constructed for a unit variance distribution, the reconstruc-
tion and decision levels for the case of o # 1 are obtained by multiplying
the tabulated values by the standard deviation of the probability density
function under consideration. The final row of the table lists the step size,
6, that simultaneously satisfies Egs. (8.2-57) through (8.5-59) and the addi-
tional constraint that '

t,’ - ti—l =8 — 8i-17 6 (8.2‘60)

If a symbol encoder that utilizes a variable-length code is used in the general
lossy predictive encoder of Fig. 8.41(a), an optimum uniform quantizer of
step size 6 will provide a lower code rate (for a Laplacian PDF) than a
fixed-length coded Lloyd-Max quantizer with the same output fidelity
(O’Neil [1971]).

Although the Lloyd-Max and optimum uniform quantizers are not adap-
tive, much can be gained from adjusting the quantization levels based on the
local behavior of an image. In theory, slowly changing regions can be finely
quantized, while the rapidly changing areas are quantized more coarsely. This
approach simultaneously reduces both granular noise and slope overload,
while requiring only a minimal increase in code rate. The trade-off is in-
creased quantizer complexity.

Levels 2 4 8
i S t; S; t; §; t
1 00 0.707 1.102 0.395 0.504 0.222
2 00 1.810 1.181 0.785
3 2.285 1.576
4 00 2.994
0 1.414 1.087 0.731

TABLE 8.12
Lloyd-Max
quantizers for a
Laplacian
probability
density function
of unit variance.
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With reference to Tables
8.3 and 8.4, wavelet cod-
ing is used in the

e JPEG-2000

compression standard.

-
b

FIGURE 8.45

A wavelet coding
system:

(a) encoder;
(b) decoder.

8.2.10 Wavelet Coding

As with the transform coding techniques of Section 8.2.8, wavelet coding is
based on the idea that the coefficients of a transform that decorrelates the pix-
els of an image can be coded more efficiently than the original pixels them-
selves. If the basis functions of the transform—in this case wavelets—pack
most of the important visual information into a small number of coefficients,
the remaining coefficients can be quantized coarsely or truncated to zero with
little image distortion.

Figure 8.45 shows a typical wavelet coding system. To encode a 2/ X 2’
image, an analyzing wavelet, ¥, and minimum decomposition level, J — P, are
selected and used to compute the discrete wavelet transform of the image. If
the wavelet has a complementary scaling function ¢, the fast wavelet trans-
form (see Sections 7.4 and 7.5) can be used. In either case, the computed trans-
form converts a large portion of the original image to horizontal, vertical, and
diagonal decomposition coefficients with zero mean and Laplacian-like prob-
abilities. Recall the image of Fig. 7.1 and the dramatically simpler statistics of
its wavelet transform in Fig. 7.10(a). Because many of the computed coeffi-
cients carry little visual information, they can be quantized and coded to mini-
mize intercoefficient and coding redundancy. Moreover, the quantization can
be adapted to exploit any positional correlation across the P decomposition
levels. One or more lossless coding methods, like run-length, Huffman, arith-
metic, and bit-plane coding, can be incorporated into the final symbol coding
step. Decoding is accomplished by inverting the encoding operations—with
the exception of quantization, which cannot be reversed exactly.

The principal difference between the wavelet-based system of Fig. 8.45 and
the transform coding system of Fig. 8.21 is the omission of the subimage process-
ing stages of the transform coder. Because wavelet transforms are both computa-
tionally efficient and inherently local (i.e., their basis functions are limited in
duration), subdivision of the original image is unnecessary. As you will see later in
this section, the removal of the subdivision step eliminates the blocking artifact
that characterizes DCT-based approximations at high compression ratios.

Wavelet selection

The wavelets chosen as the basis of the forward and inverse transforms in
Fig. 8.45 affect all aspects of wavelet coding system design and perfor-
mance. They impact directly the computational complexity of the trans-
forms and, less directly, the system’s ability to compress and reconstruct

Input Wavelet Quantizer Symbol Compressed
image transform encoder image
Compressed Symbol Inverse ‘ Decompressed

image decoder wavelet transform image
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images of acceptable error. When the transforming wavelet has a compan-
ion scaling function, the transformation can be implemented as a sequence
of digital filtering operations, with the number of filter taps equal to the
number of nonzero wavelet and scaling vector coefficients. The ability of
the wavelet to pack information into a small number of transform coeffi-
cients determines its compression and reconstruction performance.

The most widely used expansion functions for wavelet-based compression
are the Daubechies wavelets and biorthogonal wavelets. The latter allow use-
ful analysis properties, like the number of zero moments (see Section 7.5), to
be incorporated into the decomposition filters, while important synthesis
properties, like smoothness of reconstruction, are built into the reconstruc-
tion filters.

B Figure 8.46 contains four discrete wavelet transforms of Fig. 8.9(a). Haar
wavelets, the simplest and only discontinuous wavelets considered in this exam-
ple, were used as the expansion or basis functions in Fig. 8.46(a). Daubechies
wavelets, among the most popular imaging wavelets, were used in Fig. 8.46(b),

605

In digital filtering, each
filter tap multiplies a
filter coefficient by a
delayed version of the
signal being filtered.

EXAMPLE 8.25:
Wavelet bases in
wavelet coding.

ab

cd

FIGURE 8.46
Three-scale
wavelet
transforms of
Fig. 8.9(a) with
respect to

(a) Haar wavelets,
(b) Daubechies
wavelets,

(c) symlets, and
(d) Cohen-
Daubechies
Feauveau
biorthogonal
wavelets.
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and symlets, which are an extension of the Daubechies wavelets with increased
symmetry, were used in Fig. 8.46(c). The Cohen-Daubechies-Feauveau wavelets
that were employed in Fig. 8.46(d) are included to illustrate the capabilities of
DWT detail coefficienss  biorthogonal wavelets. As in previous results of this type, all detail coefficients
;f;_;‘sc“sse" mSection - were scaled to make the underlying structure more visible —with intensity 128
corresponding to coefficient value 0.

As you can see in Table 8.13, the number of operations involved in the com-
putation of the transforms in Fig. 8.46 increases from 4 to 28 multiplications and
additions per coefficient (for each decomposition level) as you move from Fig.
8.46(a) to (d). All four transforms were computed using a fast wavelet trans-
form (i.e., filter bank) formulation. Note that as the computational complexity
(i.e., the number of filter taps) increases, the information packing performance
does as well. When Haar wavelets are employed and the detail coefficients
below 1.5 are truncated to zero, 33.8% of the total transform is zeroed. With the
more complex biorthogonal wavelets, the number of zeroed coefficients rises to
42.1%, increasing the potential compression by almost 10%. o

Decomposition level selection

Another factor affecting wavelet coding computational complexity and recon-
struction error is the number of transform decomposition levels. Because a
P-scale fast wavelet transform involves P-filter bank iterations, the number of
operations in the computation of the forward and inverse transforms increases
with the number of decomposition levels. Moreover, quantizing the increas-
ingly lower-scale coefficients that result with more decomposition levels
affects increasingly larger areas of the reconstructed image. In many appli-
cations, like searching image databases or transmitting images for progressive
reconstruction, the resolution of the stored or transmitted images and the
scale of the lowest useful approximations normally determine the number of
transform levels.

EXAMPLE 8.26: M Table 8.14 illustrates the effect of decomposition level selection on the cod-
Decomposition ing of Fig. 8.9(a) using biorthogonal wavelets and a fixed global threshold of
levols in wavelot 25. As in the previous wavelet coding example, only detail coefficients are

coding. truncated. The table lists both the percentage of zeroed coefficients and the
resulting rms reconstruction errors from Eq. (8.1-10). Note that the initial
decompositions are responsible for the majority of the data compression. There
is little change in the number of truncated coefficients above three decompo-
sition levels. -]

]\;\A/:\}:lesl.tlr::nsform RWARE Ty

. Wavelet (Scaling + Wavelet) Zeroed Coefficients

filter taps and ‘

zeroed coefficients Haar (see Ex. 7.10) 242 33.8%

when truncating Daubechies (see Fig. 7.8) 8+ 8 40.9%

the transforms in Symlet (see Fig. 7.26) 8+8 41.2%

Fig. 8.46 below 1.5. Biorthogonal (see Fig. 7.39) 17+ 11 42.1%
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Decomposition Level
(Scales or Filter Approximation Truncated Reconstruction
Bank Iterations) Coefficient Image  Coefficients (%) Error (rms)
1 256 X 256 74.7% 3.27
2 128 x 128 91.7% 423
3 64 X 64 95.1% 4.54
4 32 X 32 95.6% 4.61
5 16 x 16 95.5% 4.63

Quantizer design

The most important factor affecting wavelet coding compression and recon-
struction error is coefficient quantization. Although the most widely used
quantizers are uniform, the effectiveness of the quantization can be improved
significantly by (1) introducing a larger quantization interval around zero,
called a dead zone, or (2) adapting the size of the quantization interval from
scale to scale. In either case, the selected quantization intervals must be trans-
mitted to the decoder with the encoded image bit stream. The intervals them-
selves may be determined heuristically or computed automatically based on
the image being compressed. For example, a global coefficient threshold could
be computed as the median of the absolute values of the first-level detail coef-
ficients or as a function of the number of zeroes that are truncated and the
amount of energy that is retained in the reconstructed image.

M Figure 8.47 illustrates the impact of dead zone interval size on the per-
centage of truncated detail coefficients for a three-scale biorthogonal
wavelet-based encoding of Fig. 8.9(a). As the size of the dead zone increases,
the number of truncated coefficients does as well. Above the knee of the
curve (i.e., beyond 5), there is little gain. This is due to the fact that the his-
togram of the detail coefficients is highly peaked around zero (see, for exam-
ple, Fig. 7.10).

The rms reconstruction errors corresponding to the dead zone thresholds in
Fig. 8.47 increase from 0 to 1.94 intensity levels at a threshold of 5 and to 3.83
intensity levels for a threshold of 18, where the number of zeroes reaches
93.85%. If every detail coefficient were eliminated, that percentage would in-
crease to about 97.92% (about 4%), but the reconstruction error would grow
to 12.3 intensity levels. |

JPEG-2000

JPEG-2000 extends the popular JPEG standard to provide increased flexibility
in both the compression of continuous-tone still images and access to the com-
pressed data. For example, portions of a JPEG-2000 compressed image can
be extracted for retransmission, storage, display, and/or editing. The stan-
dard is based on the wavelet coding techniques just described. Coefficient
quantization is adapted to individual scales and subbands and the quantized

TABLE 8.14
Decomposition
level impact on
wavelet coding
the 512 X 512
image of

Fig. 8.9(a).

One measure of the
energy of a digital signal
is the sum of the squared
samples.

EXAMPLE 8.27:
Dead zone

interval selection
in wavelet coding.
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FIGURE 8.47 The
impact of dead
zone interval
selection on
wavelet coding.

Ssiz is used in the
standard to denote
intensity resolution.

The irreversible
component transform
is the component
transform used for
lossy compression. The
component transform
itself is not irreversible.
A different component
transform is used for
reversible compression.
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Dead zone threshold

coefficients are arithmetically coded on a bit-plane basis (see Sections 8.2.3
and 8.2.7). Using the notation of the standard, an image is encoded as follows
(ISO/IEC [2000]).

The first step of the encoding process is to DC level shift the samples of the
Ssiz-bit unsigned image to be coded by subtracting 25*"! If the image has
more than one component—like the red, green, and blue planes of a color
image —each component is shifted individually. If there are exactly three com-
ponents, they may be optionally decorrelated using a reversible or nonre-
versible linear combination of the components. The irreversible component
transform of the standard, for example, is

Yo (x,y) = 02991 (x, y) + 05871 (x, y) + 0.114L, (x, y)
Y (x,y) = —0.168751,(x, y) — 0331261, (x, y) + 0.5, (x, y)
Y (x,y) = 0.5 (x,y) — 0.418691, (x, y) — 0.081311, (x, y)

where [y, I}, and /, are the level-shifted input components and Y, ¥{, and ¥ are
the corresponding decorrelated components. If the input components are the
red, green, and blue planes of a color image, Eq. (8.2-61) approximates the
R'G'B’ to Y'C,C, color video transform (Poynton [1996])." The goal of the trans-
formation is to improve compression efficiency; transformed components ¥, and
Y; are difference images whose histograms are highly peaked around zero.

(8.2-61)

'R'G’'B' is a gamma corrected, nonlinear version of a linear CIE (International Commission on Illumi-
nation) RGB colorimetry value. Y’ is luminance and C, and C, are color differences (i.e., scaled
B'— Y"and R’ — Y’ values).
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After the image has been level shifted and optionally decorrelated, its com-
ponents can be divided into tiles. Tiles are rectangular arrays of pixels that are
processed independently. Because an image can have more than one compo-
nent (e.g., it could be made up of three color components), the tiling process
creates tile components. Each tile component can be reconstructed indepen-
dently, providing a simple mechanism for accessing and/or manipulating a
limited region of a coded image. For example, an image having a 16:9 aspect
ratio could be subdivided into tiles so that one of its tiles is a subimage with a
4:3 aspect ratio. That tile could then be reconstructed without accessing the
other tiles in the compressed image. If the image is not subdivided into tiles, it
is a single tile.

The 1-D discrete wavelet transform of the rows and columns of each tile
component is then computed. For error-free compression, the transform is
based on a biorthogonal, 5-3 coefficient scaling and wavelet vector (Le Gall
and Tabatabai [1988]). A rounding procedure is defined for non-integer-valued
transform coefficients. In lossy applications, a 9-7 coefficient scaling-wavelet
vector (Antonini, Barlaud, Mathieu, and Daubechies [1992]) is employed. In ei-
ther case, the transform is computed using the fast wavelet transform of Section
7.4 or via a complementary lifting-based approach (Mallat [1999]). For example,
in lossy applications, the coefficients used to construct the 9-7 FWT analysis
filter bank are given in Table 8.15. The complementary lifting-based implemen-
tation involves six sequential “lifting” and “scaling” operations:

Y(@2n+1) = X(2n+1)+a[ X(2n)+ X (2n+2)],
Y(2n) = X(2n)+B[Y(2n—1)+ Y(2n +1)],
Y(2n+1) = YQn+1)+y[Y(2n)+Y(2n +2)],
Y(2n) = Y2n)+8[Y(2n—1)+Y(2n +1)),
Y(2n+1)=-K-Y(2n+1),

Y(2n) = Y(2n)/K,

ih—3=2n+1<i +3
h—2=2n<i+2
h—1=2n+1<i +1
i =2n < i

ih=2n+ 1</

io =2n< il (82-62)

Here, X is the tile component being transformed, Y is the resulting transform,
and i and i, define the position of the tile component within a component.
That is, they are the indices of the first sample of the tile-component row or

column being transformed and the one immediately following the last sample.
Variable n assumes values based on iy, i;, and which of the six operations is

Highpass Wavelet Lowpass Scaling
Filter Tap Coefficient Coefficient
0 —1.115087052456994 0.6029490182363579
+1 0.5912717631142470 0.2668641184428723
+2 0.05754352622849957 —0.07822326652898785
+3 —0.09127176311424948 —0.01686411844287495
+4 0 0.02674875741080976

Lifting-based
implementations are
another way to compute
wavelet transforms. The
coefficients used in the
approach are directly
related to the FWT filter
bank coefficients.

TABLE 8.15
Impulse responses
of the low- and
highpass analysis
filters for an
irreversible 9-7
wavelet
transform.
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These lifting-based
coefficients are specified
in the standard.

Recall from Chapter 7
that the DWT
decomposes an image
into a set of band-limited
components called
subbands.

FIGURE 8.48
JPEG 2000
two-scale wavelet
transform
tile-component
coefficient
notation and
analysis gain.

being performed. If n < iy or n = i}, X(n) is obtained by symmetrically ex-
tending X. For example, X(ip — 1) = X(ip + 1), X(ip — 2) = X(ip + 2),
X (i) = X(i; — 2),and X(i; + 1) = X(i; — 3). At the conclusion of the lift-
ing and scaling operations, the even-indexed values of Y are equivalent to the
FWT lowpass filtered output; the odd-indexed values of Y correspond to
the highpass FWT filtered result. Lifting parameters a, 8,7y, and & are
—1.586134342, —0.052980118, 0.882911075, and 0.433506852, respectively.
Scaling factor K is 1.230174105.

The transformation just described produces four subbands —a low-resolution
approximation of the tile component and the component’s horizontal, vertical,
and diagonal frequency characteristics. Repeating the transformation N
times, with subsequent iterations restricted to the previous decomposition’s
approximation coefficients, produces an N;-scale wavelet transform. Adja-
cent scales are related spatially by powers of 2 and the lowest scale contains
the only explicitly defined approximation of the original tile component. As
can be surmised from Fig. 8.48, where the notation of the JPEG-2000 standard
is summarized for the case of N; = 2, a general N;-scale transform contains
3N, + 1 subbands whose coefficients are denoted a,, for b = N, LL,
N, HL,...,1HL,1LH,1HH. The standard does not specify the number of
scales to be computed.

When each of the tile components has been processed, the total number of
transform coefficients is equal to the number of samples in the original
image —but the important visual information is concentrated in a few coeffi-
cients. To reduce the number of bits needed to represent the transform, coeffi-
cient a,(u, v) of subband b is quantized to value g,(u, v) using

las(u, v)l}

5 (8.2-63)

qp(u,v) = Sign[ab(u, v)] . ﬂoorli

s (e v) o agyy (e, v)

ayy e, v)

& - o
ayplu v) (. v)

ayplu.v) ayp(ue, v)
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where the quantiztion step size Ay is
A, = 2’“*%(1 + %) (8.2-64)

Ry, is the nominal dynamic range of subband b, and &, and u, are the number
of bits allotted to the exponent and mantissa of the subband’s coefficients. The
nominal dynamic range of subband b is the sum of the number of bits used to
represent the original image and the analysis gain bits for subband b. Subband
analysis gain bits follow the simple pattern shown in Fig. 8.48. For example,
there are two analysis gain bits for subband b = 1HH.

For error-free compression, u, = 0, R, = g, and A, = 1. For irreversible
compression, no particular quantization step size is specified in the standard.
Instead, the number of exponent and mantissa bits must be provided to the de-
coder on a subband basis, called expounded quantization, or for the N; LL sub-
band only, called derived quantization. In the latter case, the remaining
subbands are quantized using extrapolated N; LL subband parameters. Let-
ting &y and u be the number of bits allocated to the N; LL subband, the extrap-
olated parameters for subband b are

Mb = Ko

Ep = & + ny — NL (82 65)
where n, denotes the number of subband decomposition levels from the orig-
inal image tile component to subband b.

In the final steps of the encoding process, the coefficients of each trans-
formed tile-component’s subbands are arranged into rectangular blocks called
code blocks, which are coded individually, one bit plane at a time. Starting
from the most significant bit plane with a nonzero element, each bit plane is
processed in three passes. Each bit (in a bit plane) is coded in only one of the
three passes, which are called significance propagation, magnitude refinement,
and cleanup. The outputs are then arithmetically coded and grouped with sim-
ilar passes from other code blocks to form layers. A layer is an arbitrary num-
ber of groupings of coding passes from each code block. The resulting layers
finally are partitioned into packets, providing an additional method of extract-
ing a spatial region of interest from the total code stream. Packets are the fun-
damental unit of the encoded code stream.

JPEG-2000 decoders simply invert the operations described previously.
After reconstructing the subbands of the tile-components from the arith-
metically coded JPEG-2000 packets, a user-selected number of the sub-
bands is decoded. Although the encoder may have encoded M, bit planes
for a particular subband, the user—due to the embedded nature of the
code stream—may choose to decode only N, bit planes. This amounts to
quantizing the coefficients of the code block using a step size of 2M+™Ne. A,
Any nondecoded bits are set to zero and the resulting coefficients, denoted

Do not confuse the

standard’s definition of
nominal dynamic range
with the closely related
definition in Chapter 2.



